Foliage (Neural Network): Difference between revisions

From Tygron Preview Support Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
   
   
{{article end
{{article end
|notes=*
|notes=*In order to use the identified foliage areas as input for a Heat Overlay, additional steps have to be taken to obtain an actual foliage height. For more detail, see the how-to's.
|howtos=
|howtos=
*[[How to detect foliage using an Inference Overlay]]
*[[How to detect foliage using an Inference Overlay]]

Revision as of 08:46, 16 October 2024

The Foliage Neural Network is a Convolution Neural Network that identifies foliage of individual trees and bushes, mainly for gardens and private property. This Neural Network is not suited for identifying individual trees within forested areas.

An Inference Overlay can be configured with this Neural Network. Its default settings are:

Preferred grid cell size: 0.1m
Inference mode: BBox Detection
Mask threshold:
Score threshold:
Stride fraction: 0.50 (50%)

Identifiable features:

  1. Foliage

Notes

  • In order to use the identified foliage areas as input for a Heat Overlay, additional steps have to be taken to obtain an actual foliage height. For more detail, see the how-to's.

How-to's

See also