Neural Network: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
A Neural Network in the {{software}} is a pre-trained network that can be used by an [[Inference Overlay]] to classify or detect patterns and features given one or more input [[Overlay]]s. | A Neural Network in the {{software}} is a pre-trained network that can be used by an [[Inference Overlay]] to classify or detect patterns and features given one or more input [[Overlay]]s. | ||
Neural Networks are stored in the {{software}} as data [[item]]s with a reference to an [[ONNX]]-file (Open Neural Network Exchange format). | Neural Networks are stored in the {{software}} as data [[item]]s with a reference to an [[ONNX]]-file (Open Neural Network Exchange format<ref name="ONNX"/>). Multiple type of neural networks<ref name="Cheatsheet"/> are supported. | ||
Input and output for neural networks is handled using data tensors. These tensors are multi-dimensional data arrays. They are automatically identified when selecting or adding a new Neural Network. | Input and output for neural networks is handled using data tensors. These tensors are multi-dimensional data arrays. They are automatically identified when selecting or adding a new Neural Network. | ||
Whether a Neural Network classifies or detects objects given an input depends on its inference model. Such a model consists using AI-software, such as [[PyTorch]]. | Whether a Neural Network classifies or detects objects given an input depends on its inference model. Such a model consists using AI-software, such as [[PyTorch]]. | ||
Line 12: | Line 13: | ||
* [[PyTorch]] | * [[PyTorch]] | ||
}} | }} | ||
==References== | |||
<references> | |||
<ref name="ONNX">ONNX ∙ found at: https://onnx.ai/ (last visited: 2024-09-21)</ref> | |||
<ref name="Cheatsheet">Cheatsheet ∙ found at: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks</ref> | |||
</references> |
Revision as of 12:09, 30 September 2024
A Neural Network in the Tygron Platform is a pre-trained network that can be used by an Inference Overlay to classify or detect patterns and features given one or more input Overlays. Neural Networks are stored in the Tygron Platform as data items with a reference to an ONNX-file (Open Neural Network Exchange format[1]). Multiple type of neural networks[2] are supported.
Input and output for neural networks is handled using data tensors. These tensors are multi-dimensional data arrays. They are automatically identified when selecting or adding a new Neural Network.
Whether a Neural Network classifies or detects objects given an input depends on its inference model. Such a model consists using AI-software, such as PyTorch.
See also
References
- ↑ ONNX ∙ found at: https://onnx.ai/ (last visited: 2024-09-21)
- ↑ Cheatsheet ∙ found at: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks