Radial well freatic benchmark (Water Module): Difference between revisions

From Tygron Preview Support Wiki
Jump to navigation Jump to search
 
(9 intermediate revisions by one other user not shown)
Line 10: Line 10:


where:
where:
: <math>phi(0)</math>: stable water level at the considered stable water table edge
: <math>h_0</math>: stable water level at the considered stable water table edge
: <math>phi(r)</math>: water level between the considered stable water table edge and the well
: <math>h(r)</math>: water level between the considered stable water table edge and the well
: <math>phi(rw)</math>: water level in the well
: <math>k</math>: hydraulic conductivity of the freatic layer in m / day
: <math>k</math>: hydraulic conductivity of the freatic layer in m / day
: <math>r</math>: distance to the well
: <math>r</math>: distance to the well
Line 37: Line 36:
The [[Ground bottom distance m (Water Overlay)|ground bottom distance]] is configured as 10 meters, which places the bottom at -10 meters (datum).  
The [[Ground bottom distance m (Water Overlay)|ground bottom distance]] is configured as 10 meters, which places the bottom at -10 meters (datum).  


The [[Terrain water storage percentage (Water Overlay)|water storage fraction]] is set to 0.25.
The [[Terrain water storage percentage (Water Overlay)|water storage fraction]] is set to 0.25.<br>
The [[Terrain infiltration md (Water Overlay) infiltration m / day]] is set to 0.05.  
The [[Terrain ground infiltration md (Water Overlay)| vertical infiltration]] is set to 0.05 m / day. <br>
The [[Terrain hydraulic conductivity md (Water Overlay)| hydraulic conductivity]] is set to k m / day.<br>
 


The simulation is run for 64 days with 0 rainfall, which is configured in the weather's [[Weather rain m (Water Overlay)|rain attribute]] as: <math>[64 \cdot 24 \cdot 3600, 0]</math>
The simulation is run for 64 days with 0 rainfall, which is configured in the weather's [[Weather rain m (Water Overlay)|rain attribute]] as: <math>[64 \cdot 24 \cdot 3600, 0]</math>


===Test results===
===Test results===
Important in all these tests in the chosen R, which is the distance to the well that is considered a stable water level. Additionally, the measurements are done relative to the impenetrable soil, which is situated 10 meters below the surface.
Important in all these tests is the amount of chosen days it was ran, because the formula says nothing on how long it should take until the stable situation is reached. Secondly, the measurements are done relative to the impenetrable soil, which is situated 10 meters below the surface.


====Test case 1====
====Test case 1====
:cell size: 5 m;
:cell size: 5 m;
:<math>kD</math>: m/day;
:<math>k</math>: 4.4 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 50;
:<math>Q_0</math>: 50 m³ /day;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 64 days;
[[File:5m_50m3_k.png]]
[[File:5m_50m3_4_4k.png]]


====Test case 2====
====Test case 2====
:cell size: 5 m;
:cell size: 5 m;
:<math>kD</math>: m/day;
:<math>k</math>: 2.2 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 50;
:<math>Q_0</math>: 50 m³ /day;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 128 days;
[[File:5m_50m3_k.png]]
[[File:5m_50m3_2_2k.png]]


====Test case 3====
====Test case 3====
:cell size: 5 m;
:cell size: 5 m;
:<math>kD</math>: m/day;
:<math>k</math>: 2.2 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 50;
:<math>Q_0</math>: 25 m³/day;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 128 days;
[[File:5m_50m3_k.png]]
[[File:5m_25m3_2_2k.png]]


====Test case 4====
====Test case 4====
:cell size: 5 m;
:cell size: 5 m;
:<math>kD</math>: m/day;
:<math>k</math>: 0.44 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 50;
:<math>Q_0</math>: 4 m³/day;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 512 days;
[[File:5m_50m3_k.png]]
[[File:5m_4m3_0_44k.png]]


====Test case 5====
====Test case 5====
:cell size: 5 m;
:cell size: 5 m;
:<math>kD</math>: m/day;
:<math>k</math>: 0.11 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 25;
:<math>Q_0</math>: 4 m³/day;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 1256 days;
[[File:5m_25m3_k.png]]
[[File:5m_4m3_0_11k.png]]


====Test case 6====
====Test case 6====
:cell size: 5 m;
:cell size: 5 m;
:<math>kD</math>: m/day;
:<math>k</math>: 2.2 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 100;
:<math>Q_0</math>: 10;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 128 days;
[[File:5m_100m3_k.png]]
[[File:5m_10m3_2_2k.png]]


====Test case 7====
====Test case 7====
:cell size: 2 m;
:cell size: 2 m;
:<math>kD</math>: m/day;
:<math>k</math>: 2_2 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 1;
:<math>Q_0</math>: 1;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 64 days;
[[File:2m_1m3_k.png]]
[[File:2m_1m3_2_2k.png]]


====Test case 8====
====Test case 8====
:cell size: 2 m;
:cell size: 2 m;
:<math>k</math>: m/day;
:<math>k</math>: 0.22 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 16;
:<math>Q_0</math>: 1;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 256 days;
[[File:2m_16m3_k.png]]
[[File:2m_1m3_0_22k.png]]


====Test case 9====
====Test case 9====
:cell size: 2 m;
:cell size: 2 m;
:<math>kD</math>: m/day;
:<math>k</math>: 0.22 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 4;
:<math>Q_0</math>: 4;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 256 days;
[[File:2m_4m3_k.png]]
[[File:2m_4m3_0_22k.png]]


====Test case 10====
====Test case 10====
:cell size: 2 m;
:cell size: 2 m;
:<math>k</math>: m/day;
:<math>k</math>: 2.2 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 4;
:<math>Q_0</math>: 4;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 64 days;
[[File:2m_4m3_k.png]]
[[File:2m_4m3_2_2k.png]]


====Test case 11====
====Test case 11====
:cell size: 2 m;
:cell size: 2 m;
:<math>k</math>: m/day;
:<math>k</math>: 0.22 m/day;
:<math>R</math>: 110;
:<math>R</math>: 110;
:<math>Q_0</math>: 4;
:<math>Q_0</math>: 6;
:Simulation days <math>n</math>: 128 days;
[[File:2m_6m3_0_22k.png]]
 
 
====Test case 12====
:cell size: 2 m;
:<math>k</math>: 0.44 m/day;
:<math>R</math>: 110;
:<math>Q_0</math>: 8;
:Simulation days <math>n</math>: 64 days;
:Simulation days <math>n</math>: 64 days;
[[File:2m_4m3_k.png]]
[[File:2m_8m3_0_44k.png]]


===References===
===References===

Latest revision as of 14:47, 13 January 2021

This testcase demonstrates a situation where a well is extracting ground water in a confined freatic layer. There is no aquifer present. A characteristic ground water level curve will form over time.

Drainage freatic benchmark.gif

Formulas

The lowering of the ground water table in a closed freatic layer, without additional rainfall, can be described by the following formula [1]

where:

: stable water level at the considered stable water table edge
: water level between the considered stable water table edge and the well
: hydraulic conductivity of the freatic layer in m / day
: distance to the well
: distance of the considered stable water table edge to the well
: amount of water pumped out in m³ / day

Setup

We use the following setup in our tests. The grid size used is 51 by 51, with a configurable cell size of in meters. There is one underground outlet, which pumps water away continuously with a default amount per second.

The terrain height is set to 0 meters (datum).

The outlet is placed on the cells x = 25 and y = 25 as an inlet with a negative inlet.

INLET Q is set to
UNDERGROUND is set to true (1.0) to place the outlet below the surface.

To stabilized the water levels on the edges of the test case , an additional underground inlet is used. It is located on all cells equal to or further away than the chosen R. This inlet is configured as followed:

Inlet Q set to 0, such that is unlimited.
UNDERGROUND is set to true (1.0) to place the outlet below the surface.
UPPER_THRESHOLD set to -2 m.
LOWER_THRESHOLD set to -2 m.

The ground bottom distance is configured as 10 meters, which places the bottom at -10 meters (datum).

The water storage fraction is set to 0.25.
The vertical infiltration is set to 0.05 m / day.
The hydraulic conductivity is set to k m / day.


The simulation is run for 64 days with 0 rainfall, which is configured in the weather's rain attribute as:

Test results

Important in all these tests is the amount of chosen days it was ran, because the formula says nothing on how long it should take until the stable situation is reached. Secondly, the measurements are done relative to the impenetrable soil, which is situated 10 meters below the surface.

Test case 1

cell size: 5 m;
: 4.4 m/day;
: 110;
: 50 m³ /day;
Simulation days : 64 days;

5m 50m3 4 4k.png

Test case 2

cell size: 5 m;
: 2.2 m/day;
: 110;
: 50 m³ /day;
Simulation days : 128 days;

5m 50m3 2 2k.png

Test case 3

cell size: 5 m;
: 2.2 m/day;
: 110;
: 25 m³/day;
Simulation days : 128 days;

5m 25m3 2 2k.png

Test case 4

cell size: 5 m;
: 0.44 m/day;
: 110;
: 4 m³/day;
Simulation days : 512 days;

5m 4m3 0 44k.png

Test case 5

cell size: 5 m;
: 0.11 m/day;
: 110;
: 4 m³/day;
Simulation days : 1256 days;

5m 4m3 0 11k.png

Test case 6

cell size: 5 m;
: 2.2 m/day;
: 110;
: 10;
Simulation days : 128 days;

5m 10m3 2 2k.png

Test case 7

cell size: 2 m;
: 2_2 m/day;
: 110;
: 1;
Simulation days : 64 days;

2m 1m3 2 2k.png

Test case 8

cell size: 2 m;
: 0.22 m/day;
: 110;
: 1;
Simulation days : 256 days;

2m 1m3 0 22k.png

Test case 9

cell size: 2 m;
: 0.22 m/day;
: 110;
: 4;
Simulation days : 256 days;

2m 4m3 0 22k.png

Test case 10

cell size: 2 m;
: 2.2 m/day;
: 110;
: 4;
Simulation days : 64 days;

2m 4m3 2 2k.png

Test case 11

cell size: 2 m;
: 0.22 m/day;
: 110;
: 6;
Simulation days : 128 days;

2m 6m3 0 22k.png


Test case 12

cell size: 2 m;
: 0.44 m/day;
: 110;
: 8;
Simulation days : 64 days;

2m 8m3 0 44k.png

References

  1. Verruijt, A. (1970). Theory of Groundwater Flow. Macmillan, London.