Subsidence Overlay: Difference between revisions
Line 66: | Line 66: | ||
====Other keys/attributes==== | ====Other keys/attributes==== | ||
For more information on which values can be adjusted, see [[Subsidence calculation]]. | For more information on which values can be adjusted, see [[Subsidence calculation]]. | ||
Revision as of 09:19, 25 July 2017
What is the subsidence overlay
The subsidence overlay is a grid overlay, and part of the subsidence collection of overlays. It shows which places in the 3D world are subject to subsidence due to oxidation and/or compaction of peat.
How the subsidence overlay calculates
Subsidence is currently composed of 2 forms of reduction of peat: oxidation and compaction. These forms of subsidence are both relevant for the complete picture of subsidence, but are, in principle, calculated via separate formulas. The results of these formulas are added together to get the total amount of subsidence.
Oxidation
Peat, when exposed to oxygen, can oxidize. In this process the peat combines with the air to form CO2, reducing the total mass and volume of the peat. The amount of oxidation depends on the clay thickness, because clay may insulate the peat, preventing it from oxidizing. It also depends on the (lowest) ground water level in relation to the surface of the land.
For information on the exact calculation of subsidence due to oxidation, see the article on Subsidence calculation.
Compaction
Peat is a porous and relatively soft terrain type, meaning it can be compressed. Based on the amount of peat in the ground, the density of the top layer, and the net height increase.
For information on the exact calculation of subsidence due to compaction, see the article on Subsidence calculation.
Multi-year calculations
Subsidence is calculated in 1-year steps. For each year, the amount of subsidence is calculated. That amount is then used to recalculate the input parameters for the overlay. The next 1-year step is then calculated.
For more information on the way the multi-year calculation is performed, see Subsidence calculation.
How to configure the subsidence overlay
When the subsidence overlay is added to a project, there is some minimum information required for a calculation.
Peat soil
The calculation will only work when the terrain is sensitive to subsidence. By default, peat is the only terrain sensitive to subsidence. If your project does not yet have a peat soil, you can either set a different soil type to be sensitive to subsidence, or add peat to your project.
- Hover over the 3D world and click to find the underground soil type
- Select that underground soil type in the left panel
- In the right panel, switch to the attributes tab
- Add the attribute "SUBSIDENCE" with value 1
- Select "peat" in the left panel
- Select the "General" tab in the right panel
- Draw the terrain in the 3D world
Water level areas
Subsidence is only calculated within water level areas, regardless of what data is present in the project. These areas are defined by the fact that they have a WATER_LEVEL attribute.
There are 2 ways of getting this data into your project: by importing it (i.e. your own data) into the project as areas with attributes, or by manually drawing the appropriate areas and adding attributes to those.
- Drag your GeoJSON file into the editor
- Select "Import as areas
- Rename the water level attribute to "WATER_LEVEL"
- Select "Send"
- Add a new area to the project
- Draw the area into the 3D World
- Add the attribute "WATER_LEVEL" to the area, with a value of, for example, "-10"
- Select "refresh grid"
Refresh overlays
When data has been loaded in or changed in the editor, the grid is not updated automatically, so you will not immediately see your changes. To force the grid to update, you can refresh the grid.
Note that only oxidation is calculated outside of a session or testrun. Compaction requires a stakeholder to take a certain type of action first.
Further data
It's possible to configure the overlay further with additional data.
Ground water levels
By default, the ground water levels are loaded in from a publicly available geotiff automatically. Under the "Keys" tab in the right panel, you can change the selected geotiff by selecting a different one at "Include Ground Water Tiff". You can also disable the ground water geotiff, and use a ground water level attribute of areas instead.
- Select the overlay
- In the right panel, select the "keys" tab
- Uncheck the "Include Ground Water Tiff" checkbox
- Select or create an area, part of the 3D world
- Add the attribute "GLG" to the area, with a value of, for example, "-1"
Clay thickness
By default, no data about clay thickness is available, and is considered to be "0". It's possible to add this attribute to areas to further influence the amount of subsidence taking place.
- Select the overlay
- Select or create an area, part of the 3D world
- Add the attribute "CLAY_THICKNESS" to the area, with a value of, for example, "0,4"
Other keys/attributes
For more information on which values can be adjusted, see Subsidence calculation.