Rainfall Overlay: Difference between revisions

From Tygron Preview Support Wiki
Jump to navigation Jump to search
No edit summary
 
(112 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{learned|what the rainfall overlay is|how the rainfall overlay can be used|how the rainfall overlay can be configured|what principles govern its calculation}}
[[File:Rainfall-Overlay.jpg|thumb|right|200px|Rainfall overlay]]
The Rainfall Overlay is a variant of the [[Water Overlay]], which in turn is a [[Grid overlay|grid overlay]]. Water overlays are connected to the [[Water Module]], a complex hydrological calculation module within the {{software}}.


==What is the Rainfall overlay?==
The Rainfall overlay specializes in displaying the hazard and impact of (heavy) rainfall over the project area. Based on the elevation model, terrain roughness and representations of the sewer and water systems, several result types can be generated by the accompanying Water Module.


The rainfall overlay is an [[Overlay]] displaying the hazard and impact of heavy rainfall over the project area. Based on the elevation model, terrain roughness and representations of the sewer and water systems, several result types can be displayed.
A [[Rainfall_Overlay_tutorial|Rainfall Overlay Tutorial]] is available to get you started with this overlay.


==Adding and removing==
In order to get more familiar with the different components of the Rainfall Overlay check out Quadrant 2 of the [[Testbed_water_module|Water Module Testbed]]. This Testbed is available to you as a project in the {{software}}.
To add a rainfall overlay go to the Overlays menu in the GEO DATA ribbon and select Add Rainfall. To remove the overlay, press Remove below the overlays list.


[[File:Rainfall_overlay_01.PNG|700px]] [[File:Rainfall_overlay_02.PNG|700px]]
==Rainfall overlay results==
The Rainfall Overlay is a Water Overlay that is connected to the Water Module. This Water Module performs two dimensional grid based water simulations for a large set of input data and parameters, configured mostly through a related [[Water Overlay Wizard]]. When a simulation finishes, the module stores the result in the Rainfall overlay based on the selected result type. Only one result type can be stored per Rainfall overlay.


A [[Rainfall_Overlay_tutorial|Rainfall Overlay Tutorial]] is available to start working with this overlay.
The Water Module however, is not restricted to generating only one type of result. Instead it can produce multiple unique result types for one single simulation.
Fortunately it is possible to add additional result type overlays which relate to a particular Rainfall overlay. These are known as [[Result Child Overlay]]s. Again, each child overlay only stores one particular result type.


==Result types==
Apart from multiple result types, the Rainfall overlay can also store result data of multiple, intermediate simulation results, instead of just a single end result. These intermediate simulation results are known as [[timeframes (Water Overlay)|timeframes]].  
The rainfall overlay is a [[grid overlay]] showing results of heavy rainfall on the surface (flooding), sub-surface (groundwater), open water and sewer system. The following results are produced:
{| class="wikitable"
! Result-Type
! Unit
! Descritpion
|-
|BASE_GROUNDWATER_DISTANCE
|m (below surface)
|Initial groundwater level relative to the surface level (NL: ontwateringsdiepte).
|-
|BASE_TYPES
|nominal value
|Division of gridcells in water, land or sewer areas that are connected to the sewer.
|-f
|EVAPORATED
|m (mm)¹
|Total evaporation over the simulation period
|-
|IMPACTED_BUILDINGS
|nominal value
|Constructions impacted by flood: the value from the function value indicator is assigned to a building if the water depth at a grid-cell surrounding the building exceeds the overlay attribute value IMPACT_FLOOD_TRESHOLD_M
|-
|SEWER_LAST_VALUE
|m (mm)¹
|The amount of water in the sewer storage at the end of simulation
|-
|SEWER_MAX_VALUE
|m (mm)¹
|Maximum amount of water in the sewer storage during the simulation
|-
|SURFACE_DURATION
|s (min)¹
|The amount of time the water depth in a cell exceeds the value set in the overlay attribute value SHOW_DURATION_FLOOD_LEVEL_M
|-
|SURFACE_FLOW
|m3/m2
|Total volume of water passed a grid-cell, scaled by the cell surface (grid cell-size^2)
|-
|SURFACE_LAST_VALUE
|m (min)¹
|Water depth at the end of simulation
|-
|SURFACE_MAX_VALUE
|m (min)¹
|Maximum water depth during the simulation
|-
|UNDERGROUND_FLOW
|m³/m²
|Totall infiltration amount from the surface to groundwater
|-
|UNDERGROUND_LAST_VALUE
|m (mm)
|The amount by which the groundwater table has risen above the initial groundwater level at the end of simulation
|-
|UNDERGROUND_MAX_VALUE
|m (mm)
|The maximum amount by which the groundwater table has risen above the initial groundwater during the simulation
|-
|WATER_STRESS
|m (mm)
|The Maximum water depth during the simulation. At water cells only a water depth is shown if the depth exceeds the overlay attribute value ALLOWED_WATER_INCREASE_M


|}
For the full list of result types, see [[Result type (Water Overlay)#List of Result Types|List of Result Types]].


¹ the units between () are as displayed in the 3D client. If exported to GTiff the SI-convention is used: meters (m) and seconds (s).
For other results, which are not overlay results, but still related to the simulation for a particular Rainfall overlay, see [[Results (Water Overlay)|Rainfall overlay results]].


==Rainfall Overlay Model==
==Module==
A Rainfall Overlay can be configured by opening the Rainfall Overlay Wizard. More in-depth information can be found under each of the categories below.
{{Water Module buttons}}


The Rainfall Overlay Model will be described in this seciton
==References==
# [[Water Module Theory#Formulas|Water model formulas]]


[[File:Rainfall_overlay_04.PNG|500px]] [[File:Rainfall_overlay_05.PNG|800px]]
{{WaterOverlay output nav}}
 
{{Overlay nav}}
===Rainfall/Evaporation===
Rainfall can be specified uniform for the entire computational grid, using the rainfall overlay wizard. The following can be specified:
* amount: the total amount of rainfall over time (mm) [[File:Rainfall_overlay_06.PNG|400px|right]]
* duration: the length of the rainfall event
* sines: the amount of peaks (represented by sines) in the rainfall event
 
Potential evapotranspiration is computed with the following equation:
 
ETpot = ETc x Kc
 
Where ETc is the reference potential evapotranspiration, filled in the weather tab of the rainfall overlay. The potential evaporation, computed from meteorological parameters and representative for a reference surface. According to the FAO [http://www.fao.org/docrep/X0490E/x0490e05.htm]:
 
''The reference surface is a hypothetical grass reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23. The reference surface closely resembles an extensive surface of green, well-watered grass of uniform height, actively growing and completely shading the ground. The fixed surface resistance of 70 s m-1 implies a moderately dry soil surface resulting from about a weekly irrigation frequency.''
 
Kc is the crop coefficient; a multiplication factor on ETc for converting to potential evapotranspiration. Kc is related to the terrain type specified for the respective cell. If the cell is inundated the value for open water is used.
 
[[File:Evaporation.png]]
 
No unsaturated zone description is available. Therefore evaporation can only take place from the surface and is limited to the total amount of water available on the surface and/or being infiltrated in the sub-soil.
 
===Surface flow===
Surface flow is computed, using the diffusive wave approximation in a simple explicit computation scheme:
 
[[File:Rainfall_overlay_07.PNG|600px]]
 
The basic assumptions behind the implementation of the surface flow computation scheme are:
# Flow velocities are small
# Flow volumes are small
# From (1) and (2) follows: momentum (momentum = mass(volume) * velocity) is small
# And from the above it is assumed all momentum is locally generated by pressure, gravity and friction forces. Momentum on cell XY, has no impact on flow in adjacent cells.
 
===Infiltration===
Water stored on the surface, not added to sewer, building storage or evaporated can infiltrate in the subsoil. A cells infiltration capacity is assumed by:
 
'''I = min(Ib,Isurf,Kv)'''
 
where:
* I is a cells infiltration capacity (m/day)
* Ib is the GROUND_INFILTRATION_MD attribute assigned to the building on the specific cell.
* Isurf is the GROUND_INFILTRATION_MD attribute assigned to the surface of a specific cell.
* Kv is the GROUND_INFILTRATION_MD attribute assigned to the underground of a specific cell. This value should be interpreted as the vertical conductivity (Kv) of the sub-soil.
 
===Groundwater flow===
 
===Sewer inflow===
 
===Sewer overflow===
 
===Structure flow===
 
===Outflow===
 
 
===Scope of application===
The rainfall overlay is typically used to show impact of heavy rainfall, typically more than 20 mm/hour in urban areas, in flat till mildly-sloped areas. It includes all processes describing what is commonly referred to as pluvial flooding or flash floods.
 
Please bear in mind the following:
* As the sewer system is simplified to districts, flooding due to sewer surcharge (water ex-filtrating from sewer systems) due to insufficient sewer capacity is excluded
* As the surface water system is simplified to districts, flooding due to over-topping canal embankments is excluded
* The total simulation time is by default divided by 2000 time steps (referred to as cycles). When the total simulation time is increased, the amount of cycles can be increased when necessary to assure accurate simulation results results.
 
==Rainfall overlay wizard==
The rainfall overlay can be added to the project multiple times, to present different outcomes or scenarios and compare these, for example for different rainfall amounts. For information on adding and removing the overlay to and from the project, see the page about[[overlay#Adding and removing overlays| overlay]]s in general.
 
When no input data is provided, results will be computed using default values and assumptions. To specify input, the rainfall overlay wizard is developed.
 
===Step 1: Defining the weather===
In the first step the weather can be defined. Currently rainfall and evaporation are assumed uniform over the project domain; no variation in space can be specified.
 
[[File:Step1-weather.PNG|400px]]
 
At this screen you can define:
# a rainfall event and give it a name
# the length of the rainfall event and the dry period after the event. The sum of these determine the period over wich a simulation is run
# the total rainfall amount in mm which will be distributed over the length of the rainfall event
# the [[Rainfall_overlay_calculations#Evaporation_&_the_vertical_water_balance| reference evaporation]] rate in mm/day
# a rainfall-pattern, currently defined in 1-10 sines, which can be controlled by the slider
 
===Step 2: Setup of the water system===
The overlay model can be defined by providing the following data:
*water areas (for now typically peilgebieden)
*sewer districts (rioleringsgebieden)
*hydraulic structures (culverts,weirs and pumps)
*initial groundwater levels
 
====Water areas====
Water areas are imported as one or multiple [[area]]s and have one uniform representative water level. Water from one water area can flow to an adjacent water areas via [[#Hydraulic structures|hydraulic structures]]. Water can be extracted from the water system by specification of an outlet.
 
[[File:Step2-water_areas.PNG|400px]]
 
Water areas are defined by uploading a [[geojson]] file. The following attributes are needed for the calculations.
{| class="wikitable"
! Attribute
! Description
! Example
! Remark
|-
| NAME
| The name of the water level area.
| PG 256
| This attribute is not loaded in as attribute, but can be used as name to identify the resulting area in the Engine later on.
|-
| WATER_LEVEL
| The height of the water, in meters relative to reference (mNAP in The Netherlands).
| -1.5
| This is mandatory information
|-
| OUTLET
| The amount of water which disappears from this level area in cubic meters per second (m3/s).
| 1.65
| This could also be the outlet of a ''gemaal''
|}
 
====Initial groundwater level====
This step in the rain overlay wizard provides the possibility to upload a GeoTiff file with groundwater levels in m relative to reference level (NAP in The Netherlands). By default the groundwater level of the water level areas is used (for example the Gemiddelde Hoge Grondwaterstand in Dutch cases). The soil layer between the surface and the groundwater is available for storage.
 
====Sewer areas====
The next step allows for the sewer areas to be uploaded. The file is loaded in as a [[geojson]] file as [[area]]s. The following attributes are needed:
{| class="wikitable"
! Attribute
! Description
! Example
! Remark
|-
| NAME
| The name of the sewer.
| Sewer North-East
| This attribute is not loaded in as attribute, but can be used as name to identify the resulting area in the Engine later on.
|-
| SEWER_PUMP_SPEED
| The speed at which water is pumped out of the sewer, in cubic meters per second (m3/s).
| 0.0012
|
|-
| SEWER_STORAGE
| The amount of water which can be stored in this sewer, in meters (m).
| 0.007
| The total amount of storage for this sewer is the surface area of the [[construction]]s which are connected to the sewer in this particular sewer area, times this attribute.
|}
If no sewers exist, the model has no water flowing into sewer containers for storage. Therefore, you can automatically generate these areas. For more information on how the generation of these areas is done or about the sewer system in general, see the [[Rainfall overlay calculations#Sewer system|Rainfall overlay calculations]] page.
 
====Hydraulic structures====
[[#Water areas|Water areas]] can discharge to adjacent water areas and [[#Sewer areas|sewer areas]] can discharge to water areas by means of the hydraulic structures. Hydraulic structures are loaded in the project using the rainfall overlay wizard. The following structures are implemented:
* Weirs, culverts and pumps, connecting [[#Water areas|water areas]]
* Sewer overflows, connecting [[#Sewer areas|sewer areas]] to [[#Water areas|water areas]]
 
 
The following attributes need to be present. 
{| class="wikitable"
! Attribute
! Description
! Example
! Remark
|-
| NAME
| The name of the weir.
| PG 256
| This attribute is not loaded in as attribute, but can be used as name to identify the resulting contruction in the Engine later on.
|-
| WEIR_HEIGHT_M
| The height of the weir (crest level), in meters relative to the reference level used (NAP in The Netherlands).
| -1.5
|
|-
| WEIR_WIDTH
| The width of the weir (crest) in meters.
| 1.2
|
|-
| WEIR_COEFFICIENT
| The loss coefficient of the weir (a combination of contraction and other losses).
| 0.6
|
|-
| WEIR_N
|
|
|
|-}
 
Weirs must overlap with at most 2 water level areas. If a weir overlaps with more that 2 water level areas, 2 areas are selected at random which the weir pumps between. If a weir overlaps with only 1 water level area, only its outlet function is processed. Structures which do not overlap with any water level areas are imported for visualization, but do not transport any water.
 
===Step 3: Hydrological coefficients===
In the next steps of the wizard, hydrological coefficients regarding the surface and the underground terrains, can be edited.
For each of these coefficients, representative values are already entered in the forms. 
*Water infiltration (m per day): the speed by which the water infiltrates the underground. The speed is also determined by the underground water infiltration factor. From these two values, the lowest value is used.
*Water manning: the Gauckler Manning coefficient, often denoted as n, is an empirically derived coefficient, which is dependent on many factors, including surface roughness and sinuosity. For more information about this formula see [[Rainfall_overlay_calculations#Manning_formula(surface_runoff)|the Rainfall overlay calculations page]].
*Water evaporation factor: this factor will be multiplied with the general reference evaporation. 
*Reference Evaporation (mm per day):  The Makking reference evaporation factor. This value ranges from 0.5 mm per day in the winter till 3 mm per day in the summer for the weather station ‘ De Bilt’ in the Netherlands.
*Water storage fraction: the percentage of underground volume that can be used for the storage of water. This number is determined by the difference between the ground water level and the surface height times the surface area.
*Vertical to horizontal infiltration factor: This factor will be multiplied with the vertical infiltration speed, to obtain the horizontal infiltration speed.
 
[[File:Visualisatie_wateroverlast.JPG|400px|thumb|right|Schematic visualization of the water flow over the water level areas and hydrological constructions.]]
 
==Building functions==
Since [[construction]]s in the Engine have an effect on the flow of the water, for example if a building has a green roof, attributes concerning these values can be adjusted in this step of the wizard. Representative values are already entered in the table. The same values can also be adjusted in the [[Functions#Editing functions|function values window]].
 
==Visualization of the water system==
In the last step you can choose for a [[#Result_types|result type]], as listed above. If you have provided the water level areas and the hydrological constructions to the Engine, along with the required attributes, a schematic visualization of the water flow from the various water level areas and the hydrological constructions is visible. The red spheres stand for water flowing from a weir to another water level area. The green spheres stand for a weir receiving water from a water level area. The speed of the spheres is based on the WEIR_SPEED and the OUTLET values. If no spheres are visible, the water flows very gently between these water level areas. The pop-ups in the 3D world are panels which mark the middle of the water level area or the place of the hydrological constructions. In these panels, the provided attributes, such as the WATER_LEVEL_M or the WEIR_HEIGHT can also be edited. Play around with this to see how the water flow changes.
 
==Including subsidence==
[[File:Subsidence_attribute.JPG|400px|thumb|right|Create a new attribute containing the recalculated water levels.]]
[[File:Include_subsidence.JPG|400px|thumb|right|Include the subsidence overlay and select the new water level attribute.]]
For the calculation of the effects of a severe rainfall, effects of subsidence can be included, such as the recalculated water levels and the changed ground levels. For now, ground water levels affected by the subsidence are not included. 
 
{{Editor steps|title=include subsidence|Add the [[Subsidence_(Overlay)|subsidence overlay]]. Take note of when to use and how to configure the subsidence overlay.|In the [[right panel]], select the "Keys" tab|Select the "Area attribute: output level (m)". Choose a new attribute, for example the WATER_LEVEL_OUTPUT attribute, to write the new water levels to. |In the Rainfall overlay in the [[right panel]], select the "Keys" tab.|Choose the overlay for the subsidence model you want to use in the "Include Subsidence" form.|Also select the newly created attribute containing the water levels in the "Area Attribute: Water Level (m)" form.|Go to the "General" tab and recalculate the grid.}}
 
Be careful not to write the new water levels calculated in the [[Subsidence_(Overlay)|subsidence overlay]] to the already existing water level attribute, otherwise the subsidence model will be recalculated with incorrect values when refreshing this overlay.
 
You can play around with the results of the two overlays and compare, for example, two rainfall overlays where one overlay takes the effects of a subsidence model into account and the other overlay shows results without these effects.

Latest revision as of 13:47, 17 January 2023

Rainfall overlay

The Rainfall Overlay is a variant of the Water Overlay, which in turn is a grid overlay. Water overlays are connected to the Water Module, a complex hydrological calculation module within the Tygron Platform.

The Rainfall overlay specializes in displaying the hazard and impact of (heavy) rainfall over the project area. Based on the elevation model, terrain roughness and representations of the sewer and water systems, several result types can be generated by the accompanying Water Module.

A Rainfall Overlay Tutorial is available to get you started with this overlay.

In order to get more familiar with the different components of the Rainfall Overlay check out Quadrant 2 of the Water Module Testbed. This Testbed is available to you as a project in the Tygron Platform.

Rainfall overlay results

The Rainfall Overlay is a Water Overlay that is connected to the Water Module. This Water Module performs two dimensional grid based water simulations for a large set of input data and parameters, configured mostly through a related Water Overlay Wizard. When a simulation finishes, the module stores the result in the Rainfall overlay based on the selected result type. Only one result type can be stored per Rainfall overlay.

The Water Module however, is not restricted to generating only one type of result. Instead it can produce multiple unique result types for one single simulation. Fortunately it is possible to add additional result type overlays which relate to a particular Rainfall overlay. These are known as Result Child Overlays. Again, each child overlay only stores one particular result type.

Apart from multiple result types, the Rainfall overlay can also store result data of multiple, intermediate simulation results, instead of just a single end result. These intermediate simulation results are known as timeframes.

For the full list of result types, see List of Result Types.

For other results, which are not overlay results, but still related to the simulation for a particular Rainfall overlay, see Rainfall overlay results.

Module

A Rainfall Overlay can be configured by opening the Rainfall Overlay Wizard. More in-depth information can be found under each of the categories below.


References

  1. Water model formulas